The Ostracon is published annually by members of the Egyptian Study Society. The ESS is a non-profit organization whose purpose is to study ancient Egypt. It is an associate group of the Denver Museum of Nature and Science. Articles are contributed by members and scholars on a voluntary basis. Member participation is encouraged. Nothing may be reprinted in whole or part without written permission of the author.

The opinions expressed in The Ostracon do not necessarily represent the views of the Ostracon staff, the Egyptian Study Society, or the Denver Museum of Nature and Science.

©2009 Egyptian Study Society

Publication of The Ostracon is supported by a grant from THE PETTY FOUNDATION

Egyptian Study Society, Inc.
P.O. Box 40754
Denver, Colorado 80204-0754
UNITED STATES OF AMERICA

In This Issue

THE TAUSERT TEMPLE PROJECT: 2009 SEASON
Richard H. Wilkinson

ATTICA MINES, GREECE: A POSSIBLE TWELFTH CENTURY BCE REFERENCE
Aly Barakat

EXECUTING THE WILL OF PHARAOH: THE ROOTS OF PERFORMANCE MEASUREMENT IN ANCIENT EGYPT
Steven L. Krahn

Call for Articles
THE TAUSERT TEMPLE PROJECT
2009 SEASON

By Richard H. Wilkinson

Fig. 1. One of the two sections of the Tausert Temple site cleared by the University of Arizona
Egyptian Expedition during its 2009 winter season.

Like researchers in any science, archaeologists usually have the advantage of standing on the
shoulders of researchers who have gone before them. This is especially true in Egypt where it is
often difficult to find an area which has not been visited and studied, if not actively excavated, by the
great British archaeologist Sir William Flinders Petrie. Petrie was a true giant in Egyptian archaeology, and we owe much to him. His accomplishments were many, and the list of sites he excavated was amazingly long, but his work was often hurried, and sometimes, as a result, it was flawed.

The University of Arizona’s excavation of the Queen Tausert’s memorial temple on the
west bank at Thebes is an excellent case in point. The site of Tausert’s temple was examined
briefly by Petrie in 1896. Since then, it has been largely ignored because it was presumed that
the temple was never completed in antiquity.¹ After careful study, however, the University of
Arizona Egyptian Expedition decided that this might not have been the case and that it would
be worthwhile to clean carefully, record, plan, conserve and publish the remains of this
temple. The Supreme Council of Antiquities’ kindly granted us permission to begin this
project in 2004. To date, we have completed field seasons at the site annually.³ Our winter
2008–9 season was a relatively short one (a fact which was dictated by a number of
constraints) conducted in late December 2008 and the first part of January 2009. Nevertheless, a good deal of valuable work was accomplished during this time.⁴
CLEARING THE TEMPLE SITE

During the course of our 2009 season, our team cleared the debris from two sections of the temple in the southwest and northwest quadrants of the site—on each side of the central surface area enumerated by us as S36 (Fig. 2). These two areas were chosen in order to allow us to close in on the central portion of the inner temple, which will be the focus of our next field season. Both of the areas that we cleaned this season proved to be profitable, although for different reasons. While the southern area proved to have few remaining artifacts, clearing it enabled us to uncover and properly draw a section of the temple plan that was mapped incorrectly by Petrie. On the other hand, the northern area followed the plan produced by Petrie to a reasonable extent, but produced many artifacts and small finds showing that this area was not properly excavated, either—even if dug through—in Petrie’s brief examination of the site.

The southwestern area of the temple cleared this season consisted of the foundation trenches and surface areas (the temple’s rooms) between our TA1 and TA6 on the monument’s North-South axis and TB12 and TB15 on its East-West axis. Excavation of this section of the temple revealed the surface areas S37—39 that had been completely misrepresented on Petrie’s plan and had to be redesignated as S37 A & B, 38 A & B, and 39 A & B, for Petrie’s three surface units were actually six. Two discoveries were of particular value in this section. Of great interest to us was the fact that a number of these surface areas were covered with dekka—the mud and gypsum flooring material that was used to coat many of the surface areas we excavated on the northern side of the temple. The poor state of preservation of many of the surface areas on the temple’s southern side meant that we found no dekka flooring in that area until now, but its clear presence on several of these units indicated that flooring was also in place in this part of the temple, as we suspected.

The western surface of S25 and the eastern part of S40 were also cleared. S25 yielded sherds of Amarna Blue Ware at
gebel level nearly parallel to the point at which we found a smashed Amarna Blue vessel on a surface area on the north side of the temple in our 2006 season. The disturbed nature of the fill on S25 indicates that the rest of the vessel was probably lost at some point, perhaps to Petrie’s men. Although our find of a single sherd might seem to be a small thing, the presence of this notable type of ceramic on widely separated surfaces at parallel points on the site strengthens our belief that this pottery may have been used in foundation rituals in the temple.

The area examined on the northwest side of the temple consisted of a few foundation trench and surface units around surface areas S33 and S34 that needed final clearing, along with the larger area which lay between our TA11B and TA14 on the temple’s North-South axis and between TB12 and TB15 on its East-West axis.

Complete cleaning of surface area S33 was worthwhile, for we discovered another small offering pit (Fig.3) almost identical to the one discovered in the surface of S32 in our last season. That pit contained a haunch of beef set in a bed of Persea leaves. The pit found this season on S33 was of approximately the same diameter, but not as deep, and contained only fragments of Persea leaves and seeds. The pit is located in an area which was certainly probed by Petrie’s men (nearby in the same disturbed stratum, we found the sole of a shoe and a piece of cloth, no doubt, belonging to one of his workmen).

Fig. 3. Small foundation pit discovered in surface area S33 containing only fragments of Persea leaves and seeds. Unlike the nearly identical pit discovered last season, this one was in an area clearly probed by Petrie’s men and had been previously robbed of its contents.
Without a doubt, the pit’s symbolic purpose was identical to that of the pit found earlier and was associated with the foundation rituals for the temple’s expansion.

The larger surface areas between TB9 and TB14 had substantially more debris and required somewhat selective clearing, leaving some surfaces for future work. The trenches and surface units cleared produced a great number of finds, however. Most of these were human remains and remnants of burial assemblages probably associated with Third Intermediate Period tombs which we know were constructed somewhere at the rear of the temple. Among the objects we extracted from this area were several shabtis, part of a female fertility figure, many pottery sherds, faience beads, an amulet mold, and other small items, along with a great number of painted coffin fragments (Figs. 4a & b).

The area also produced many pieces of mummy cloth and mummy tissue, along with a great number of disarticulated bones, all of which indicate that the mummies were thoroughly broken up at the time that some (or all) of these tombs were robbed. The osteological material is extensive (see Fig. 5, next page), and the hundreds of bones we collected are clearly from a number of bodies (based on a great deal of duplication of bones) of different ages (based on bone sizes, epiphysial fusion, vertebral wear, etc.). Some of these human remains were in excellent condition of preservation, as with the whole hand discovered in our cleaning of the area directly east of TB14:2 (see Fig. 6, next page). This condition will certainly help in our analysis of the
osteological material. Unfortunately, Dr. Gonzalo Sanchez, our medical expert, could not be with us this season, so we have put off formal examination and analysis of the human remains until our next season. At that time, with Dr. Sanchez’s help, we hope to study these human remains in detail to extract whatever information we can with regard to the number, age, sex, and health of the individuals.

Fig. 6. One of the hands discovered this season among the human remains recovered around S41. It shows the excellent state of preservation of some of the remains of the intrusive burial(s).
As we excavated along the northern edges of S30 and S41 last season, we found large construction mud bricks that are over 40 cm in length. They appear to be part of a New Kingdom room or outer wall running along the edge of this surface unit. This season, we pushed deeper into this area and found what at first appeared to be the lower two courses of a carefully made brick wall of much smaller bricks. The bricks average c. 26 cm x 13.5 cm and are just a little larger than those in the Khonsuardis temple directly to the north of us:

Sample Tausert New Kingdom bricks: 40 x 19, 42 x 19, 39 x 19, 36 x 19
Sample Tausert S41 (Third Intermediate Period?) bricks: 26 x 14, 24 x 13, 27 x 14, 26 x 13
Sample Khonsuardis Late Period bricks: 24 x 11, 20 x 10, 21 x 11, 21 x 10

These small convex-topped bricks of post–New Kingdom date were placed directly on the gebel flooring of S41 and formed a rectangular structure oriented on the temple’s N-S and E-W axes. As we cleared this area, however, it became apparent that this was not a wall (as there is no foundation in the loose gebel, and no evidence of more destroyed courses), but probably a mud brick surround (Fig. 7).

Fig. 7. Mud brick structure around which most of the human remains were recovered and which may represent the surround to a tomb entrance. If this is the case, then the remains and burial assemblage fragments show obviously that the tomb was robbed in antiquity.

This surround, if that is what it is, runs back along the surface unit and may have bounded the entrance steps to a tomb in the gebel wall now under the embankment on the temple’s west side. It may, however, be a mud brick surround to a burial shaft. We shall have to wait until our next season to confirm this possibility, but the presence of a tomb in this area (clearly robbed in antiquity, but not without archaeological interest and an important part of the history of the temple) seems certain.
All the artifacts found in the course of the 2009 season were catalogued and placed in storage in the SCA magazine behind the Carter House on Luxor’s West Bank. The most important items will be documented in our forthcoming report.

PRODUCING A PLAN OF THE TEMPLE

We continued to make progress toward creating an accurate map of the temple, and were able to gather a good deal of data toward this goal. The AutoCAD model that we are preparing of the site was updated and developed further in our 2009 season.

As in almost every season we have worked on the Tausert site, we found and mapped areas which were considerably different from those found in Petrie’s map, the details of which were often not the result of excavation, but simply guessed at, apparently. A striking example of this (Figs. 8a & b) was found in our excavation of the areas enumerated by us as surface areas S37, 38, and 39 which Petrie mapped as long, unbroken surfaces of successively decreasing size running from south to north. Our excavation found that these surface areas were not only of equal—not decreasing—widths, but also were bisected by a trench unknown to Petrie (our TB13B) that formed six small surface areas of two different sizes. Once again, this example shows clearly that much of Petrie’s map must have been produced by simply looking at mounds of earth covering various areas of the temple and presuming that the mounds represented underlying surfaces by their shape and size.

As we have mentioned in previous reports, we plan to incorporate all our data for the site into a three-dimensional GIS model based on the completed AutoCAD model. One of our team members is an experienced computer specialist and has begun the initial work for this total matrix GIS model. The completed model will give full and immediate access to all excavation, conservation, and reconstruction data from our project. Selecting any area on the map of the temple site will show full excavation, artifact, feature, unit and conservation details for that locus. The GIS model will incorporate textual and photographic evidence as well as statistical analysis of the site’s data.
PRESERVATION OF THE TEMPLE REMAINS

Although we have found no decorated blocks or other temple remains needing conservation to date, in the course of our excavation each season we have continued to assess each 2-meter unit of the temple's foundation trenches and surface areas carefully in terms of their condition. Every unit was assessed as being intact, good, fair, poor, or destroyed (using a percentage range breakdown). Units were then coded in terms of needed treatment as: 1—Very unstable, needs treatment soon, 2—Somewhat unstable, should get treatment in the near future, 3—Fairly stable, might need treatment in the future, or 4—Stable.

Figs. 9a, b, & c.

One of the foundation trench sections (TA3:3–5) having undercut gebel walls which were stabilized in the current season.

Fig. 9a. The trench wall undercut by erosion.

Fig. 9b. The undercut areas tightly packed with stones.
As planned for this season, we began to stabilize areas of the foundation trenches that needed support or reconstruction. This need for stabilization was particularly acute in the eastern half of the temple’s main trenches that bound the courtyard area (our S2). These trench units appear to have been badly damaged when their stone was robbed at some point after the reign of Tausert and, as a result, have long been exposed and have suffered considerable erosion over time. Fortunately, we were able to stabilize and protect all of the affected gebel walls in the eastern part of trenches TA1–3 (Fig. 9) and, where needed, the areas in trenches TA12–14.

Despite the fence that we built around the site, it is impossible to preserve the mud brick walls in the temple’s foundation trenches, for the fence is routinely knocked down when we are absent and the children of local people take down the walls that we have reconstructed each season. As a result, we now plan to reconstruct some of the walls then bury them in sand with only the top surfaces of the topmost course showing where the walls are located. The walls are, of course, mapped into our site map and AutoCAD model. More difficult to preserve are the remains of superstructure walls that we are now beginning to find. These will have to be covered each season after they are recorded in order to protect them. We plan to continue this basic protective work while we also seek advice from specialists with regard to any features of the temple that may be found to need technical restoration or preservation.

PRELIMINARY CONCLUSIONS

Although we were limited by a short excavation season, we utilized a team varying from fifty to sixty workmen, which allowed us to clean two substantially sized areas of the temple site successfully, to collect a large number of artifacts, to stabilize and preserve a large number of the temple’s gebel trench walls effectively, and to continue recording the condition of our excavation units with an eye toward further preservation work. Finally, our mapping of the newly cleared areas continues to work toward our goals of producing the first accurate map of this temple and improving our understanding of the monument’s form, history and level of completion.
Based on his very limited examination of Tausert’s Temple, Flinders Petrie stated that little, if any, evidence of building could be found on the site apart from a few stone foundation blocks at the very rear of the temple. Our work, however, shows that the temple was much more developed than Petrie appeared to believe and others subsequently presumed. Each season has brought new and further indications of this fact. We may now expand the list of points noted last season to include all of the following evidence of the temple’s development:

1) Deep foundation trenches capable of supporting large stone superstructures were dug over the whole site.
2) Foundation deposit pits were constructed and stocked at points around the site, and small amulets and beads were sprinkled through most of the foundation trenches.
3) A deep bed of clean sand was placed in all these trenches to receive foundation stones.
4) Foundation blocks were then placed in most of the trenches. We have found many more whole and partial foundation blocks over a much more widespread area than Petrie was aware of, including a number of partial and nearly complete blocks in the front part of the temple.
5) Widespread damage to the edges of the gebel walls of many of the foundation trenches, especially on both sides of the temple courtyard, indicates that a great number of large foundation stones may have been pried and dragged out of their trenches.
6) Petrie does not mention building blocks, but we found a complete one sitting on top of a foundation block and hundreds of fragments of plastered blocks throughout the site. The smaller size, accessibility, and relatively easy extraction of these blocks explain why virtually none of them remain.
7) Both our initial surface survey and our ongoing excavation reveal the presence of stone fragments over the whole site. These fragments are almost invariably broken (not cut) from larger stones, indicating that stone features were demolished on the temple site on a widespread basis.
8) Dekka—gypsum-mud flooring—found on many of the surface units (rooms) we uncovered indicates that walls had been built around these areas already, for the dekka surfaces would have been destroyed in the building process if they had been put in first.
9) Plaster found on many of the stone chunks we uncovered may indicate that walls and other features were built and plastered before being demolished later for their stone.

All these facts point to the probability that Tausert’s Temple was far more developed than previously believed, and that it was demolished for its stone by Sethnakht or another king of his or a subsequent dynasty. Based on the points of evidence garnered from seasons of work on this site, the knowledge gained and conclusions reached supplant previous ideas and suppositions about the monument and represent one of the most important results of our work.
NOTES

2. We would like to thank Director General Dr. Zahi Hawass and the members of the Permanent Committee of the Supreme Council of Antiquities for granting us permission to initiate and to continue this project.

3. Summaries of our reports describing the previous seasons of the University of Arizona Egyptian Expedition’s Tausert Temple Project have been published in previous issues of *The Ostracon*, and elsewhere.

4. We would like to thank Mr. Magdy El-Ghandour, Director of Foreign Missions, for his kind and continued help in arranging our work in Egypt. In Luxor, the Director of Upper Egypt, Mr. Mansour Boraik, was a great help, as always, and we thank him in particular. We also thank Mr. Ali El-Asfar, who was Director of West Bank Antiquities during our season, and Mr. Mustafa El-Waziry, who took over that office as we completed our work. Mr. Mohamed Hamdan, Director of the West Bank Missions Office, was extremely helpful, and we also thank our assigned inspector, Mr. Omar Ahmed Abuzaid, who was a great help and who participated in the excavation with us. Reis Omar Farouk Sayed El-Quftawi, along with Assistant Reis Kamal Helimy, were both a great help to us. As before, our thanks are also due to the American Research Center in Egypt, which facilitated our Expedition, and most especially to Shari Saunders and Amira Khattab, whose kind and able help we appreciate greatly. The support of a number of individuals and institutions that have made our work possible is deeply appreciated and will be specified in our preliminary (scheduled to appear in 2009) and final project reports.

5. Our project staff for this season consisted of Richard Wilkinson (director), Aaryn Brewer (AutoCAD assistant), Adam Cirzan (mapping assistant), Richard Harwood (associate director for photography and section leader), Kevin Johnson (historical and photographic assistant), Danielle Phelps (object registrar), Linda Regan Gosner (senior excavation assistant and section leader) and Mark Wilkinson (excavation assistant). We employed some sixty Egyptian workmen during the season as well as Reis, Assistant Reis, drivers and boatmen.

6. The numeration employed in our designation of trench and surface units in the Tausert site is documented in our reports and publications, but may be explained briefly here as follows. The temple’s foundation trenches were assigned designations TA1–14 for East-West trenches and TB1–18 for South-North trenches (with 2-meter sub-units) in the areas cleared so far. This system makes possible a better analysis of artifact distribution than a regular grid system would allow. Surface units defined, studied, or cleaned so far are designated S1–S41.

7. Petrie 1896, Plate XXVI.

About the author:

Dr. Richard Wilkinson is professor of Egyptian archaeology at the University of Arizona and director of the University’s Egyptian Expedition, which has conducted research and excavation in Egypt since 1989. He is the author of many articles and books on ancient Egypt and editor of Egyptology Today, published by Cambridge University Press